Main Theme in Hattori Lab.

Genome Analysis and Clarification of Biological System on Environmental Microbiomes

Originally,bacteria consist of millions kinds of microbial and live under natural environment. There is the complicated various life systems of interaction (comprehensive device in order to live) like between bacterial environment and so on. But 99% or more of the bacterial kind that consist of the bacterial community can't be isolated and cultured, and the entity is not clear. Therefore, the original life system which shows under the environment isn't visible by just the former research which deals with the separated culture possible bacteria.Then, the bacterial flora(metagenome) large-scale sequence analysis is being advanced for clarification of the bacterial flora life system under natural environment which includes this enormous unknown difficult culture bacteria. This metagenome information contains massive amounts of generic information which is not partial, therefore we're sure to expect to become hundreds times of the number of the new bacterial, gene, metabolic response, and metabolic substances which are found. We can expect these will be the wide variety of bio-resources which overcome amount of current limited bacterial resources in wide ranges of industries like medical, energy, food, environment, and so on.



ヒトの腸内に常在する腸内細菌叢は私たちヒトにもっとも身近な細菌叢であり、ヒトの健康と病気に密接な関係をもつことが古くから知られている。しかしながら、腸内細菌叢のもつ遺伝子組成や生態機能などの詳細はわかっていない。これは、腸内細菌の大部分が、嫌気性菌で分離培養が困難であることが大きな理由である。そこで、細菌叢のゲノム配列を直接決定して、培養、難培養にかかわらず、そこに存在する細菌の遺伝子情報を大量に獲得するメタゲノム解析に取り組んでいる。とくに、メタゲノムデータの情報学的解析では、遺伝子予測、遺伝子機能注釈、オルソログ遺伝子のクラスタリング(COG解析)、外挿法による COG及び細菌種数の推定、個人間や他環境間の比較解析等に有用な方法/技術論の開発を進めている。これらを通じて、腸内細菌叢の多様性、個人間や健康と病態間の相違、細菌叢のゲノム動態、代謝ネットワーク、分子レベルでの生態機能、細菌叢の形成機構等の解明に取り組んでいる。さらに、腸内細菌叢以外に、口腔、皮膚細菌叢などのヒト常在菌の解明も計画しており、ヒト常在菌叢の生態機能や生命システムの包括的な理解をめざしている。

 図2: ヒト腸内細菌叢のメタゲノム解析





世界最小ゲノム発見 理研ニュース(2006)写真
腸内細菌研究 R25記事(2006)写真
腸内細菌研究 朝日新聞記事(Nov. 2005)写真
放線菌ゲノム解析 Nature Biotech表紙(2003)写真


  1. Nakabachi A. et al.: The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science, 314, 267 (2006).
  2. Itoh T. et al.: Identification of large ancient duplications associated with human gene deserts. Nature Genet. 37, 1041-1043 (2005).
  3. Watanabe H et al.: DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature, 429:382-328 (2004).
  4. International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature, 431:931-945 (2004).
  5. Ikeda H. et al.: Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotech., 21, 526-531 (2003).
  6. Akman L. et al.: Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genet., 32, 402-407 (2002).
  7. Hayashi T. et al.: Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8:11-22(2001).
  8. International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature, 409:860-921 (2001).
  9. Shigenobu S. et al.: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407, 81-86 (2000).
  10. Hattori M. et al.: The DNA sequence of human chromosome 21. Nature, 405, 311-319 (2000).
en/intro.txt · Last modified: 2007/12/06 01:01 by kim
Recent changes RSS feed Creative Commons License Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki